Regulation of Lipoprotein Homeostasis by Self-Assembling Peptides

ACS Appl Bio Mater. 2020 Dec 21;3(12):8978-8988. doi: 10.1021/acsabm.0c01229. Epub 2020 Dec 2.

Abstract

High levels of serum low-density lipoprotein (LDL) cholesterol contribute to atherosclerosis, a key risk factor of cardiovascular diseases. PCSK9 is a circulatory enzyme that downregulates expression of hepatic LDL receptors, concomitantly increasing serum LDL-C. This work investigates a small, self-assembling peptide, EPep2-8, as a peptide inhibitor of PCSK9. EPep2-8 is a multidomain peptide comprising a self-assembling domain, E2, conjugated to a bioactive domain, Pep2-8, previously shown to inhibit PCSK9. The E2 domain facilitates self-assembly of EPep2-8 into long, nanofibrous polymers with an underlying supramolecular β-sheet secondary structure. Intermolecular interactions between nanofibers drive EPep2-8 to form a thixotropic and cytocompatible hydrogel in aqueous and charge-neutral solutions. These properties enable EPep2-8 to be delivered as an in situ depot for regulation of lipoprotein homeostasis. In surface plasmon resonance studies, EPep2-8 bound specifically to PCSK9 with an apparent, noncovalent, and irreversible dissociation, significantly improving the binding affinity of Pep2-8 alone (KD = 667 ± 48 nM). Increased binding affinity of EPep2-8 is primarily due to the superstoichiometric interaction of the peptide with PCSK9. Promisingly, EPep2-8 retains bioactivity in vitro, engendering dose-dependent uptake of LDL-C in hepatocytes. This mechanism of self-assembly on a target site may be a simple method to improve the affinity of peptide inhibitors.

Keywords: LDL; PCSK9; cholesterol metabolism; peptide amphiphiles; self-assembly.