Hepatitis B virus-related acute liver failure (HBV-ALF) is a common type of liver failure, associated with high short-term mortality and morbidity rates. However, the immune landscape of HBV-ALF and its correlation with cell death are currently unknown. Based on 3 Gene Expression Omnibus data sets, infiltrated immune cells were quantified by single-sample gene set enrichment analysis method. The expression levels of immune genes and the abundance of immune cells in liver failure were compared with those in normal liver. The enrichment scores of cell death gene sets from Kyoto Encyclopedia of Genes and Genomes (KEGG) were calculated by gene set variation analysis method, and a protein-protein interaction (PPI) network was constructed using Cytoscape. Besides 21 differentially expressed immune genes, we identified 11 types of differentially infiltrated immune cells in HBV-ALF compared with normal liver. Enriched pathways of these immune genes mainly consisted of chemokine receptors, chemokine binding, interleukin-10 signaling, and TNFs bind their physiological receptors by Reactome pathway analysis. In addition, the enrichment scores of apoptosis and necroptosis pathway instead of autophagy and ferroptosis were increased in liver failure compared with normal liver. PPI network and gene cluster analysis of immune genes and apoptosis and necroptosis genes suggested that hub genes were mainly related to immune response and apoptosis. In summary, our study offers a conceptual framework to understand the immune landscape of HBV-ALF, which might help to improve prognosis.
Copyright © 2022 Jiao Gong et al.