Effect of Organic Amendments in Soil on Physiological and Biochemical Attributes of Vachellia nilotica and Dalbergia sissoo under Saline Stress

Plants (Basel). 2022 Jan 17;11(2):228. doi: 10.3390/plants11020228.

Abstract

Vachellia nilotica (L.) P.J.H. Hurther & Mabb. and Dalbergia sissoo Roxb. are two of the most important multipurpose agroforestry tree species of the Indian sub-continent, but their growth in saline soils is greatly reduced. Recently, organic amendments have showed the potential to increase plant growth in salt-affected soils; however, the influence of using these amendments for growing the above-mentioned tree species under saline conditions is not yet quantified. Therefore, an experiment was devised to analyze the interactive effects of organic amendments in saline soils on the growth of V. nilotica and D. sissoo. Under controlled conditions, a pot experiment was conducted in sandy loam saline soils (EC = 20.5 dSm-1). Organic amendments from four diverse sources: farmyard manure (FYM), poultry manure (PM), slurry (SL), and farmyard manure biochar (FYMB) were employed in this study. At the harvesting time, data regarding morphological, physiological, ionic, and biochemical parameters were obtained. The current study results indicated that both tree species reacted differently, but positively, to diverse applied amendments. The maximum increment in total above-ground biomass, total below-ground biomass, and shoot length for V. nilotica (163.8%, 116.3%, and 68.2%, respectively) was observed in FYM amended soils, while the maximum increment for D. sissoo (128%, 86%, and 107%, respectively) was observed in FYMB amended soils, as compared to control. Minimum plant growth of both species was observed in untreated soils (saline soils). Likewise, the maximum potassium ion and minimum sodium ion concentrations were present in the root and shoots of plants (both species) treated with FYMB. The use of organic amendments resulted in decreased concentrations of malondialdehyde and hydrogen peroxide, and increased concentrations of antioxidant enzymes such as SOD, POD, and CAT. Moreover, higher photosynthetic rates and stomatal conductance were observed in the plants grown in amended soils. The findings of this study can be used to include the above-mentioned high-value tree species for future afforestation programs under saline conditions.

Keywords: afforestation; agroforestry; nursery raising; salinity; soil degradation.