Genetic Aberrations and Interaction of NEK2 and TP53 Accelerate Aggressiveness of Multiple Myeloma

Adv Sci (Weinh). 2022 Mar;9(9):e2104491. doi: 10.1002/advs.202104491. Epub 2022 Jan 27.

Abstract

It has been previously shown that (never in mitosis gene A)-related kinase 2 (NEK2) is upregulated in multiple myeloma (MM) and contributes to drug resistance. However, the mechanisms behind this upregulation remain poorly understood. In this study, it is found that amplification of NEK2 and hypermethylation of distal CpG islands in its promoter correlate strongly with increased NEK2 expression. Patients with NEK2 amplification have a poor rate of survival and often exhibit TP53 deletion, which is an independent prognostic factor in MM. This combination of TP53 knockout and NEK2 overexpression induces asymmetric mitosis, proliferation, drug resistance, and tumorigenic behaviors in MM in vitro and in vivo. In contrast, delivery of wild type p53 and suppression of NEK2 in TP53-/- MM cell lines inhibit tumor formation and enhance the effect of Bortezomib against MM. It is also discovered that inactivating p53 elevates NEK2 expression genetically by inducing NEK2 amplification, transcriptionally by increased activity of cell cycle-related genes like E2F8 and epigenetically by upregulating DNA methyltransferases. Dual defects of TP53 and NEK2 may define patients with the poorest outcomes in MM with p53 inactivation, and NEK2 may serve as a novel therapeutic target in aggressive MM with p53 abnormalities.

Keywords: NEK2; TP53; amplification; multiple myeloma; transcriptional regulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bortezomib / metabolism
  • Bortezomib / pharmacology
  • Bortezomib / therapeutic use
  • Cell Line, Tumor
  • Humans
  • Multiple Myeloma* / drug therapy
  • Multiple Myeloma* / genetics
  • Multiple Myeloma* / metabolism
  • NIMA-Related Kinases / genetics
  • NIMA-Related Kinases / metabolism
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism
  • Tumor Suppressor Protein p53 / therapeutic use

Substances

  • TP53 protein, human
  • Tumor Suppressor Protein p53
  • Bortezomib
  • NEK2 protein, human
  • NIMA-Related Kinases