MR-assisted PET respiratory motion correction using deep-learning based short-scan motion fields

Magn Reson Med. 2022 Aug;88(2):676-690. doi: 10.1002/mrm.29233. Epub 2022 Mar 28.

Abstract

Purpose: We evaluated the impact of PET respiratory motion correction (MoCo) in a phantom and patients. Moreover, we proposed and examined a PET MoCo approach using motion vector fields (MVFs) from a deep-learning reconstructed short MRI scan.

Methods: The evaluation of PET MoCo was performed in a respiratory motion phantom study with varying lesion sizes and tumor to background ratios (TBRs) using a static scan as the ground truth. MRI-based MVFs were derived from either 2000 spokes (MoCo2000 , 5-6 min acquisition time) using a Fourier transform reconstruction or 200 spokes (MoCoP2P200 , 30-40 s acquisition time) using a deep-learning Phase2Phase (P2P) reconstruction and then incorporated into PET MoCo reconstruction. For six patients with hepatic lesions, the performance of PET MoCo was evaluated using quantitative metrics (SUVmax , SUVpeak , SUVmean , lesion volume) and a blinded radiological review on lesion conspicuity.

Results: MRI-assisted PET MoCo methods provided similar results to static scans across most lesions with varying TBRs in the phantom. Both MoCo2000 and MoCoP2P200 PET images had significantly higher SUVmax , SUVpeak , SUVmean and significantly lower lesion volume than non-motion-corrected (non-MoCo) PET images. There was no statistical difference between MoCo2000 and MoCoP2P200 PET images for SUVmax , SUVpeak , SUVmean or lesion volume. Both radiological reviewers found that MoCo2000 and MoCoP2P200 PET significantly improved lesion conspicuity.

Conclusion: An MRI-assisted PET MoCo method was evaluated using the ground truth in a phantom study. In patients with hepatic lesions, PET MoCo images improved quantitative and qualitative metrics based on only 30-40 s of MRI motion modeling data.

Keywords: CAPTURE; P2P; PET/MRI; deep learning; free-breathing; respiratory motion correction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Deep Learning*
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging / methods
  • Motion
  • Positron-Emission Tomography* / methods