The Endophytic Strain ZS-3 Enhances Salt Tolerance in Arabidopsis thaliana by Regulating Photosynthesis, Osmotic Stress, and Ion Homeostasis and Inducing Systemic Tolerance

Front Plant Sci. 2022 Mar 21:13:820837. doi: 10.3389/fpls.2022.820837. eCollection 2022.

Abstract

Soil salinity is one of the main factors limiting agricultural development worldwide and has an adverse effect on plant growth and yield. To date, plant growth-promoting rhizobacteria (PGPR) are considered to be one of the most promising eco-friendly strategies for improving saline soils. The bacterium Bacillus megaterium ZS-3 is an excellent PGPR strain that induces growth promotion as well as biotic stress resistance and tolerance to abiotic stress in a broad range of host plants. In this study, the potential mechanisms of protection against salinity stress by B. megaterium ZS-3 in Arabidopsis thaliana were explored. Regulation by ZS-3 improved growth in A. thaliana under severe saline conditions. The results showed that ZS-3 treatment significantly increased the biomass, chlorophyll content and carotenoid content of A. thaliana. Compared to the control, the leaf area and total fresh weight of plants inoculated with ZS-3 increased by 245% and 271%, respectively; the chlorophyll a, chlorophyll b, and carotenoid contents increased by 335%, 146%, and 372%, respectively, under salt stress. Physiological and biochemical tests showed that ZS-3 regulated the content of osmotic substances in plants under salt stress. Compared to the control, the soluble sugar content of the ZS-3-treated group was significantly increased by 288%, while the proline content was significantly reduced by 41.43%. Quantification of Na+ and K+ contents showed that ZS-3 treatment significantly reduced Na+ accumulation and increased the K+/Na+ ratio in plants. ZS-3 also isolated Na+ in vesicles by upregulating NHX1 and AVP1 expression while limiting Na+ uptake by downregulating HKT1, which protected against Na+ toxicity. Higher levels of peroxidase and catalase activity and reduced glutathione were detected in plants inoculated with ZS-3 compared to those in uninoculated plants. In addition, it was revealed that ZS-3 activates salicylic acid (NPR1 and PR1) and jasmonic acid/ethylene (AOS, LOX2, PDF1.2, and ERF1) signaling pathways to induce systemic tolerance, thereby inducing salt tolerance in plants. In conclusion, the results of this study indicate that ZS-3 has the potential to act as an environmentally friendly salt tolerance inducer that can promote plant growth in salt-stressed environments.

Keywords: Bacillus megaterium; PGPR; ion regulation; salicylic acid; salt stress.