Solution-Processed Red, Green, and Blue Quantum Rod Light-Emitting Diodes

ACS Appl Mater Interfaces. 2022 Apr 27;14(16):18723-18735. doi: 10.1021/acsami.2c04466. Epub 2022 Apr 13.

Abstract

Solution-processed semiconductor nanocrystals are evolving as potential candidates for future display and lighting applications owing to their size-tunable emission, ultrasaturated colors, and compatibility with large-area flexible substrates. Among them, quantum rods (QRs) are emerging materials for optoelectronic applications, offering polarized emission, high light outcoupling efficiency, color purity, and better stability in solid films. However, synthesizing QRs covering the full visible wavelength region has been a big challenge, particularly in the blue range. Herein, we report for the first time the synthesis of red CdSe/CdS, green CdSe/ZnxCd1-xS/ZnS, and blue CdSe/ZnxCd1-xS/ZnS QRs and their application in red, green, and blue QR-based light-emitting diodes (QR-LEDs). We have improved the charge injection balance into the QRs through embedding a poly(methyl methacrylate) (PMMA) layer between the emissive and electron transport layers. The thin PMMA electron-blocking layer (EBL) suppresses the excessive electron flux and thus promotes charge injection balance and pushes the recombination zone back to the QR layer, resulting in 1.35×, 1.2×, and 1.7× peak external quantum efficiency improvement for red, green, and blue QR-LEDs, respectively. The efficiency roll-off of green and blue QR-LEDs with an EBL is less than 50% at maximum current density. The proposed red, green, and blue QR-LEDs open up an avenue toward further improving the light source efficiency and stability focusing on real device applications.

Keywords: electron-blocking layer; light outcoupling; quantum rods; red, green, and blue QR-LEDs.