Record-Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation

Adv Mater. 2022 Jun;34(24):e2201681. doi: 10.1002/adma.202201681. Epub 2022 May 16.

Abstract

Flexible perovskite solar cells (f-PSCs) have attracted great attention because of their unique advantages in lightweight and portable electronics applications. However, their efficiencies are far inferior to those of their rigid counterparts. Herein, a novel histamine diiodate (HADI) is designed based on theoretical study to modify the SnO2 /perovskite interface. Systematic experimental results reveal that the HADI serves effectively as a multifunctional agent mainly in three aspects: 1) surface modification to realign the SnO2 conduction band upward to improve interfacial charge extraction; 2) passivating the buried perovskite surface, and 3) bridging between the SnO2 and perovskite layers for effective charge transfer. Consequently, the rigid MA-free PSCs based on the HADI-SnO2 electron transport layer (ETL) display not only a high champion power conversion efficiency (PCE) of 24.79% and open-circuit voltage (VOC ) of 1.20 V but also outstanding stability as demonstrated by the PSCs preserving 91% of their initial efficiencies after being exposed to ambient atmosphere for 1200 h without any encapsulation. Furthermore, the solution-processed HADI-SnO2 ETL formed at low temperature (100 °C) is utilized in f-PSCs that achieve a PCE as high as 22.44%, the highest reported PCE for f-PSCs to date.

Keywords: flexible; high efficiency; histamine diiodate; interface passivation; perovskite solar cells.