Background: Genomic surveillance using quality-assured whole-genome sequencing (WGS) together with epidemiological and antimicrobial resistance (AMR) data is essential to characterise the circulating Neisseria gonorrhoeae lineages and their association to patient groups (defined by demographic and epidemiological factors). In 2013, the European gonococcal population was characterised genomically for the first time. We describe the European gonococcal population in 2018 and identify emerging or vanishing lineages associated with AMR and epidemiological characteristics of patients, to elucidate recent changes in AMR and gonorrhoea epidemiology in Europe.
Methods: We did WGS on 2375 gonococcal isolates from 2018 (mainly Sept 1-Nov 30) in 26 EU and EEA countries. Molecular typing and AMR determinants were extracted from quality-checked genomic data. Association analyses identified links between genomic lineages, AMR, and epidemiological data.
Findings: Azithromycin-resistant N gonorrhoeae (8·0% [191/2375] in 2018) is rising in Europe due to the introduction or emergence and subsequent expansion of a novel N gonorrhoeae multi-antigen sequence typing (NG-MAST) genogroup, G12302 (132 [5·6%] of 2375; N gonorrhoeae sequence typing for antimicrobial resistance [NG-STAR] clonal complex [CC]168/63), carrying a mosaic mtrR promoter and mtrD sequence and found in 24 countries in 2018. CC63 was associated with pharyngeal infections in men who have sex with men. Susceptibility to ceftriaxone and cefixime is increasing, as the resistance-associated lineage, NG-MAST G1407 (51 [2·1%] of 2375), is progressively vanishing since 2009-10.
Interpretation: Enhanced gonococcal AMR surveillance is imperative worldwide. WGS, linked to epidemiological and AMR data, is essential to elucidate the dynamics in gonorrhoea epidemiology and gonococcal populations as well as to predict AMR. When feasible, WGS should supplement the national and international AMR surveillance programmes to elucidate AMR changes over time. In the EU and EEA, increasing low-level azithromycin resistance could threaten the recommended ceftriaxone-azithromycin dual therapy, and an evidence-based clinical azithromycin resistance breakpoint is needed. Nevertheless, increasing ceftriaxone susceptibility, declining cefixime resistance, and absence of known resistance mutations for new treatments (zoliflodacin, gepotidacin) are promising.
Funding: European Centre for Disease Prevention and Control, Centre for Genomic Pathogen Surveillance, Örebro University Hospital, Wellcome.
Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.