Characterizing the microbial communities associated with soil-borne disease incidence is a key approach in understanding the potential role of microbes in protecting crops from pathogens. In this study, we compared the soil properties and microbial composition of the rhizosphere soil and roots of healthy and bacterial wilt-infected tobacco plants to assess their potential influence on plant health. Our results revealed that the relative abundance of pathogens was higher in diseased plants than in healthy plants. Moreover, compared with healthy plants, there was a significantly higher microbial alpha diversity in the roots and rhizosphere soil of diseased plants. In addition, we detected a lower abundance of certain plant microbiota, including species in the genera Penicillium, Trichoderma, and Burkholderia in the rhizosphere of diseased plants, which were found to be significantly negatively associated with the relative abundance of Ralstonia. Indeed, compared with healthy plants, the co-occurrence networks of diseased plants included a larger number of associations linked to plant health. Furthermore, structural equation modeling revealed that these specific microbes were correlated with disease suppression, thereby implying that they may play important roles in maintaining plant health. In conclusion, our findings provide important insights into the relationships between soil-borne disease incidence and changes in the belowground microbial community. These findings will serve as a basis for further research investigating the use of specific plant-associated genera to inhibit soil-borne diseases.
Keywords: Co-occurrence network; Plant root; Rhizosphere soil; Tobacco bacterial wilt.
© 2022. The Author(s), under exclusive licence to Springer Nature B.V.