This study aimed to assess temporary and permanent auditory effects associated with occupational coexposure to low levels of noise and solvents. Cross-sectional study with 25 printing industry workers simultaneously exposed to low noise (<80 dBA TWA) and low levels of solvents. The control group consisted of 29 industry workers without the selected exposures. Participants answered a questionnaire and underwent auditory tests. Auditory fatigue was measured by comparing the acoustic reflex threshold before and after the workday. Workers coexposed to solvents and noise showed significantly worse results in auditory tests in comparison with the participants in the control group. Auditory brainstem response results showed differences in III−V interpeak intervals (p = 0.046 in right ear; p = 0.039 in left ear). Mean dichotic digits scores (exposed = 89.5 ± 13.33; controls = 96.40 ± 4.46) were only different in the left ear (p = 0.054). The comparison of pre and postacoustic reflex testing indicated mean differences (p = 0.032) between the exposed (4.58 ± 6.8) and controls (0 ± 4.62) groups. This study provides evidence of a possible temporary effect (hearing fatigue) at the level of the acoustic reflex of the stapedius muscle. The permanent effects were identified mainly at the level of the high brainstem and in the auditory ability of binaural integration.
Keywords: chemical; hearing fatigue; hearing loss; ototoxicity; prevention.