Cognitive training is a promising tool for slowing or preventing cognitive decline in older adults at-risk for dementia. Its success, however, has been limited by a lack of evidence showing that it reliably causes broad training effects: improvements in cognition across a range of domains that lead to real-world benefits. Here, we propose a framework for enhancing the effect of cognitive training interventions in brain aging. The focus is on (A) developing cognitive training task paradigms that are informed by population-level cognitive characteristics and pathophysiology, and (B) personalizing how these sets are presented to participants during training via feedback loops that aim to optimize "mismatch" between participant capacity and training demands using both adaptation and random variability. In this way, cognitive training can better alter whole-brain topology in a manner that supports broad training effects in the context of brain aging.
Keywords: Brain aging; Brain topology; Broad training effect; Neuroplasticity; Personalization.
Copyright © 2022 Elsevier B.V. All rights reserved.