Anisotropic properties of single crystals of SrPt3P were studied using London penetration depth and electrical resistivity measurements. The upper critical field,Hc2(T), was determined from four-probe electrical resistivity measurements for three orthogonal directions of a magnetic field with respect to the crystal. The London penetration depth,λ(T), was determined from the magnetic susceptibility of the Meissner-London state measured using a tunnel-diode resonator technique. WhereasHc2(T)and the normal-stateρ(T)are practically identical for all three magnetic field orientations, the London penetration depth shows significant unidirectional anisotropy. The low-temperatureλ(T)is exponentially attenuated when a small excitation radiofrequency magnetic field,Hrf, is applied along thec''-direction, in which case screening currents flow in thea''b''-plane, while for the other two orientations,Hrf∥a''andHrf∥b'', the London penetration depth shows a much stronger,λ(T)∼T2, variation. Such unusual and contrasting behavior of the two anisotropies,γHT=Hc2,ab/Hc2,c=ξab/ξcandγλT=λc/λab, imposes significant constraints on the possible order parameter. Although our measurements are insufficient to derive conclusively the superconducting gap anisotropy, the order parameter with two point nodes and a modulation in the perpendicular direction is qualitatively consistent with the experimental observations.
Keywords: London penetration depth; SrPt3P; anisotropic superconducting gap; superconductor; unconventional superconductor; upper critical field.
© 2022 IOP Publishing Ltd.