COX-2 Expression in Hepatocytes Improves Mitochondrial Function after Hepatic Ischemia-Reperfusion Injury

Antioxidants (Basel). 2022 Aug 30;11(9):1724. doi: 10.3390/antiox11091724.

Abstract

Cyclooxygenase 2 (COX-2) is a key enzyme in prostanoid biosynthesis. The constitutive hepatocyte expression of COX-2 has a protective role in hepatic ischemia-reperfusion (I/R) injury (IRI), decreasing necrosis, reducing reactive oxygen species (ROS) levels, and increasing autophagy and antioxidant and anti-inflammatory response. The physiopathology of IRI directly impacts mitochondrial activity, causing ATP depletion and being the main source of ROS. Using genetically modified mice expressing human COX-2 (h-COX-2 Tg) specifically in hepatocytes, and performing I/R surgery on the liver, we demonstrate that COX-2 expression has a beneficial effect at the mitochondrial level. Mitochondria derived from h-COX-2 Tg mice livers have an increased respiratory rate associated with complex I electron-feeding pathways compared to Wild-type (Wt) littermates, without affecting complex I expression or assembly. Furthermore, Wt-derived mitochondria show a loss of mitochondrial membrane potential (ΔΨm) that correlates to increased proteolysis of fusion-related OPA1 through OMA1 protease activity. All these effects are not observed in h-COX-2 Tg mitochondria, which behave similarly to the Sham condition. These results suggest that COX-2 attenuates IRI at a mitochondrial level, preserving the proteolytic processing of OPA1, in addition to the maintenance of mitochondrial respiration.

Keywords: COX-2; high-resolution respirometry; ischemia-reperfusion; liver; mitochondrial dynamics; prostaglandins.