Introduction: Visible light spectroscopy (VLS) represents a sensitive, non-invasive method to quantify tissue oxygen levels and detect hypoxemia. The aim of this study was to assess the microperfusion patterns of the gastric pouch during laparoscopic Roux-en-Y gastric bypass (LRYGB) using the VLS technique.
Methods: Twenty patients were enrolled. Tissue oxygenation (StO2%) measurements were performed at three different localizations of the gastric wall, prior and after the creation of the gastric pouch, and after the creation of the gastro-jejunostomy.
Results: Prior to the creation of the gastric pouch, the lowest StO2% levels were observed at the level of the distal esophagus with a median StO2% of 43 (IQR 40.8-49.5). After the creation of the gastric pouch and after the creation of the gastro-jejunostomy, the lowest StO2% levels were recorded at the level of the His angle with median values of 29% (IQR 20-38.5) and 34.5% (IQR 19-39), respectively. The highest mean StO2 reduction was recorded at the level of the His angle after the creation of the gastric pouch, and it was 18.3% (SD ± 18.1%, p < 0.001). A reduction of StO2% was recorded at all localizations after the formation of the gastro-jejunostomy compared to the beginning of the operation, but the mean differences of the StO2% levels were statistically significant only at the resection line of the pouch and at the His angle (p = 0.044 and p < 0.001, respectively).
Conclusion: Gastric pouch demonstrates reduction of StO2% during LRYGB. VLS is a useful technique to assess microperfusion patterns of the stomach during LRYGB.
Keywords: Gastric bypass; Gastric microperfusion; Visible light spectroscopy.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.