Background: This study aimed to characterize the N6-methyladenosine epitranscriptomic profile induced by mono(2-ethylhexyl) phthalate (MEHP) exposure using a human-induced pluripotent stem cell-derived endothelial cell model. Methods: A multiomic approach was employed by performing RNA sequencing in parallel with an N6-methyladenosine-specific microarray to identify mRNAs, lncRNAs, and miRNAs affected by MEHP exposure. Results: An integrative multiomic analysis identified relevant biological features affected by MEHP, while functional assays provided a phenotypic characterization of these effects. Transcripts regulated by the epitranscriptome were validated with quantitative PCR and methylated RNA immunoprecipitation. Conclusion: The authors' profiling of the epitranscriptome expands the scope of toxicological insights into known environmental toxins to under surveyed cellular contexts and emerging domains of regulation and is, therefore, a valuable resource to human health.
Keywords: N6-methyladenosine; epitranscriptomic; iPSCs; mono(2-ethylhexyl) phthalate; synthetic phthalate; toxicology screening.
Synthetic phthalates, such as mono(2-ethyhexyl) phthalate, have long been recognized as environmental toxins. What effect these compounds have on endothelial cells remains poorly understood. To address this, the authors utilized a human-induced pluripotent stem cell-derived endothelial cell model to screen for an environmental toxin. They then obtained a profile of the epitranscriptomic changes involving the N6-methyladensosine modification and performed biochemical and functional assays. Overall, this study demonstrated how stem cell-based approaches can be used for toxicological screening and provided a valuable resource that profiles the epitranscriptomic response, which was complemented with RNA sequencing and functional and biochemical assays. This study provides relevant toxicological insights into the context of human health.