Ecological toxicity assessments of contaminants in aquatic environments are of great concern. However, a dilemma in ecological toxicity assessments often arises when linking the effects found in model animals in the laboratory and the phenomena observed in wild fishes in the field due to species differences. Chinese medaka (Oryzias sinensis), widely distributed in East Asia, is a satisfactory model animal to assess aquatic environment in China. Here, we domesticated this species and assembled its genome (814 Mb) using next-generation sequencing (NGS). A total of 21,922 high-confidence genes with 41,306 transcripts were obtained and annotated, and their expression patterns in tissues were determined by RNA-sequencing. Six mostly sensitive biomarker genes, including vtg1, vtg3, vtg6, zp3a.2, zp2l1, and zp2.3 to estrogen exposure were screened and validated in the fish exposed to concentrations of estrone (E1), 17β-estradiol (E2), and estriol (E3) under laboratory condition. Field investigations were then performed to evaluating the gene expression of biomarkers in wild Chinese medaka and levels of E1, E2, and E3 in the fish habitats. It was found that in 40 sampling sites, the biomarker genes were obviously highly expressed in the wild fish from about half sites, and the detection frequencies of E1, E2, and E3, were 97.5%, 42.5%, and 45% with mean concentrations of 82.48, 43.17, 52.69 ng/L, respectively. Correlation analyses of the biomarker gene expressions in the fish with the estrogens levels which were converted to EEQs showed good correlation, indicating that the environmental estrogens and estrogenicity of the surface water might adversely affect wild fishes. Finally, histologic examination of gonads in male wild Chinese medaka was performed and found the presence of intersex in the fish. This study facilitated the uses of Chinese medaka as a model animal for ecotoxicological studies.
Keywords: Biomarkers; Estrogenicity; Genome; Intersex; Oryzias sinensis; Transcriptome.
Copyright © 2022 Elsevier Ltd. All rights reserved.