Understanding the risk of developing weight-related complications associated with different body mass index categories: a systematic review

Diabetol Metab Syndr. 2022 Dec 7;14(1):186. doi: 10.1186/s13098-022-00952-4.

Abstract

Background: Obesity and overweight are major risk factors for several chronic diseases. There is limited systematic evaluation of risk equations that predict the likelihood of developing an obesity or overweight associated complication. Predicting future risk is essential for health economic modelling. Availability of future treatments rests upon a model's ability to inform clinical and decision-making bodies. This systematic literature review aimed to identify studies reporting (1) equations that calculate the risk for individuals with obesity, or overweight with a weight-related complication (OWRC), of developing additional complications, namely T2D, cardiovascular (CV) disease (CVD), acute coronary syndrome, stroke, musculoskeletal disorders, knee replacement/arthroplasty, or obstructive sleep apnea; (2) absolute or proportional risk for individuals with severe obesity, obesity or OWRC developing T2D, a CV event or mortality from knee surgery, stroke, or an acute CV event.

Methods: Databases (MEDLINE and Embase) were searched for English language reports of population-based cohort analyses or large-scale studies in Australia, Canada, Europe, the UK, and the USA between January 1, 2011, and March 29, 2021. Included reports were quality assessed using an adapted version of the Newcastle Ottawa Scale.

Results: Of the 60 included studies, the majority used European cohorts. Twenty-nine reported a risk prediction equation for developing an additional complication. The most common risk prediction equations were logistic regression models that did not differentiate between body mass index (BMI) groups (particularly above 40 kg/m2) and lacked external validation. The remaining included studies (31 studies) reported the absolute or proportional risk of mortality (29 studies), or the risk of developing T2D in a population with obesity and with prediabetes or normal glucose tolerance (NGT) (three studies), or a CV event in populations with severe obesity with NGT or T2D (three studies). Most reported proportional risk, predominantly a hazard ratio.

Conclusion: More work is needed to develop and validate these risk equations, specifically in non-European cohorts and that distinguish between BMI class II and III obesity. New data or adjustment of the current risk equations by calibration would allow for more accurate decision making at an individual and population level.

Keywords: Body mass index; Cardiovascular disease; Comorbidity; Complication; Obesity; Overweight; Risk assessment; Risk equation; Stroke; Type 2 diabetes.

Publication types

  • Review