High-pressure electrical resistivity measurements reveal that the mechanical deformation of ultra-hard WB2 during compression induces superconductivity above 50 GPa with a maximum superconducting critical temperature, Tcof 17 K at 91 GPa. Upon further compression up to 187 GPa, the Tcgradually decreases. Theoretical calculations show that electron-phonon mediated superconductivity originates from the formation of metastable stacking faults and twin boundaries that exhibit a local structure resembling MgB2 (hP3, space group 191, prototype AlB2). Synchrotron x-ray diffraction measurements up to 145 GPa show that the ambient pressure hP12 structure (space group 194, prototype WB2) continues to persist to this pressure, consistent with the formation of the planar defects above 50 GPa. The abrupt appearance of superconductivity under pressure does not coincide with a structural transition but instead with the formation and percolation of mechanically-induced stacking faults and twin boundaries. The results identify an alternate route for designing superconducting materials.
© 2022. The Author(s).