In this Feature Article, we review our recent progress in the design of shape-shifting thermoresponsive diblock copolymer nano-objects, which are prepared using various hydroxyl-functional (meth)acrylic monomers (e.g. 2‑hydroxypropyl methacrylate, 4‑hydroxybutyl acrylate or hydroxybutyl methacrylate) to generate the thermoresponsive block. Unlike traditional thermoresponsive polymers such as poly(N-isopropylacrylamide), there is no transition between soluble and insoluble polymer chains in aqueous solution. Instead, thermally driven transitions between a series of copolymer morphologies (e.g. spheres, worms, vesicles or lamellae) occur on adjusting the aqueous solution temperature owing to a subtle change in the partial degree of hydration of the permanently insoluble thermoresponsive block. Such remarkable self-assembly behavior is unprecedented in colloid science: no other amphiphilic diblock copolymer or surfactant system undergoes such behavior at a fixed chemical composition and concentration. Such shape-shifting nano-objects are characterized by transmission electron microscopy, dynamic light scattering, small-angle X-ray scattering, rheology and variable temperature 1H NMR spectroscopy. Potential applications for this fascinating new class of amphiphiles are briefly considered.
Keywords: Block copolymer self-assembly; Nano-objects; Nanoparticles; Polymerisation-induced self-assembly; RAFT polymerisation; Thermoresponsive.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.