Mutations in the MET tyrosine kinase domain and resistance to tyrosine kinase inhibitors in non-small-cell lung cancer

Respir Res. 2023 Jan 25;24(1):28. doi: 10.1186/s12931-023-02329-1.

Abstract

Background: The Mesenchymal epithelial transition factor (MET) gene encodes a receptor tyrosine kinase with pleiotropic functions in cancer. MET exon 14 skipping alterations and high-level MET amplification are oncogenic and targetable genetic changes in patients with non-small-cell lung cancer (NSCLC). Resistance to tyrosine kinase inhibitors (TKIs) has been a major challenge for targeted therapies that impairs their clinical efficacies.

Methods: Eighty-six NSCLC patients were categorized into three cohorts based on the time of detecting MET tyrosine kinase domain (TKD) mutations (cohort 1: at baseline; cohort 2: after MET-TKI treatment; cohort 3: after EGFR-TKI treatment). Baseline and paired TKI treatment samples were analyzed by targeted next-generation sequencing.

Results: MET TKD mutations were highly prevalent in METex14-positive NSCLC patients after MET-TKI treatment, including L1195V, D1228N/H/Y/E, Y1230C/H/N/S, and a double-mutant within codons D1228 and M1229. Missense mutations in MET TKD were also identified at baseline and in post-EGFR-TKI treatment samples, which showed different distribution patterns than those in post-MET-TKI treatment samples. Remarkably, H1094Y and L1195F, absent from MET-TKI-treated patients, were the predominant type of MET TKD mutations in patients after EGFR-TKI treatment. D1228H, which was not found in treatment-naïve patients, also accounted for 14.3% of all MET TKD mutations in EGFR-TKI-treated samples. Two patients with baseline EGFR-sensitizing mutations who acquired MET-V1092I or MET-H1094Y after first-line EGFR-TKI treatment experienced an overall improvement in their clinical symptoms, followed by targeted therapy with MET-TKIs.

Conclusions: MET TKD mutations were identified in both baseline and patients treated with TKIs. MET-H1094Y might play an oncogenic role in NSCLC and may confer acquired resistance to EGFR-TKIs. Preliminary data indicates that EGFR-mutated NSCLC patients who acquired MET-V1092I or MET-H1094Y may benefit from combinatorial therapy with EGFR-TKI and MET-TKI, providing insights into personalized medical treatment.

Keywords: EGFR-TKI; Genomic profiling; MET; NSCLC; Tyrosine kinase domain.

MeSH terms

  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Drug Resistance, Neoplasm / genetics
  • ErbB Receptors / genetics
  • Humans
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Mutation / genetics
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use
  • Protein-Tyrosine Kinases / genetics
  • Tyrosine Kinase Inhibitors

Substances

  • Tyrosine Kinase Inhibitors
  • ErbB Receptors
  • Protein-Tyrosine Kinases
  • Protein Kinase Inhibitors