Fibroblast growth factor 23 (FGF23) is associated with cardiovascular disease in patients with chronic kidney disease; however, the mechanisms underlying the effect of FGF23 on cardiac function remain to be investigated. Herein, we studied the effect of continuous intravenous (CIV) FGF23 loading in a deoxycorticosterone acetate (DOCA)-salt mouse model with mild chronic kidney disease and hypertension as well as heart failure with a preserved ejection fraction. Wild-type male mice were randomly allocated to 4 groups: normal control, vehicle-treated DOCA-salt mice, FGF23-treated DOCA-salt mice, and FGF23- and calcitriol-treated DOCA-salt mice. The DOCA-salt mice received the agents via the CIV route for 10 days using an infusion minipump. DOCA-salt mice that received FGF23 showed a marked increase in the serum FGF23 level, and echocardiography in these mice revealed heart failure with a preserved ejection fraction. These mice also showed exacerbation of myocardial fibrosis, concomitant with an inverse and significant correlation with Cyp27b1 expression. Calcitriol treatment attenuated FGF23-induced cardiac fibrosis and improved diastolic function via inhibition of transforming growth factor-β signaling. This effect was independent of the systemic and local levels of FGF23. These results suggest that CIV FGF23 loading exacerbates cardiac fibrosis and that locally abnormal vitamin D metabolism is involved in this mechanism. Calcitriol attenuates this exacerbation by mediating transforming growth factor-β signaling independently of the FGF23 levels.
Keywords: calcitriol; cardiac fibrosis; fibroblast growth factor 23; heart failure with preserved ejection fraction; transforming growth factor.
Copyright © 2022 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.