Objectives: To identify the molecular etiology of distinct dental anomalies found in eight Thai patients and explore the mutational effects on cellular functions.
Materials and methods: Clinical and radiographic examinations were performed for eight patients. Whole exome sequencing, mutant protein modelling, qPCR, western blot analysis, scratch assays, immunofluorescence, confocal analysis, in situ hybridization, and scanning electron micrography of teeth were done.
Results: All patients had molars with multiple supernumerary cusps, single-cusped premolars, and a reduction in root number. Mutation analysis highlighted a heterozygous c.865A>G; p.Ile289Val mutation in CACNA1S in the patients. CACNA1S is a component of the slowly inactivating L-type voltage-dependent calcium channel. Mutant protein modeling suggested that the mutation might allow leakage of Ca2+ or other cations, or a tightening, to restrict calcium flow. Immunohistochemistry analysis showed expression of Cacna1s in the developing murine tooth epithelium during stages of crown and root morphogenesis. In cell culture, the mutation resulted in abnormal cell migration of transfected CHO cells compared to wildtype CACNA1S, with changes to the cytoskeleton and markers of focal adhesion.
Conclusions: The malformations observed in our patients suggest a role for calcium signaling in organization of both cusps and roots, affecting cell dynamics within the dental epithelium.
Keywords: calcium homeostasis; hypodontia; root malformation; single‐rooted molar; supernumerary cusps; tooth development.
© 2023 Wiley Periodicals LLC.