Background: In vascular smooth muscle cells (VSMCs), LRRC8A volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A physically associates with NADPH oxidase 1 (Nox1) and supports its production of extracellular superoxide (O 2 -• ).
Methods and results: Mice lacking LRRC8A exclusively in VSMCs (Sm22α-Cre, KO) were used to assess the role of VRACs in TNFα signaling and vasomotor function. KO mesenteric vessels contracted normally to KCl and phenylephrine, but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). 48 hours of ex vivo exposure to TNFα (10ng/ml) markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 μM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 35 proteins that interacted with LRRC8A. Pathway analysis revealed actin cytoskeletal regulation as the most closely associated function of these proteins. Among these proteins, the Myosin Phosphatase Rho-Interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots which revealed LRRC8A binding at the second Pleckstrin Homology domain of MPRIP. siLRRC8A or CBX treatment decreased RhoA activity in cultured VSMCs, and MYPT1 phosphorylation at T853 was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure.
Conclusions: Interaction of Nox1/LRRC8A with MPRIP/RhoA/MYPT1/actin may allow redox regulation of the cytoskeleton and link Nox1 activation to both inflammation and vascular contractility.