Traditional lithium-ion batteries cannot meet the ever-increasing energy demands due to the unsatisfied graphite anode with sluggish electrochemical kinetics. Recently, the perovskite material family as anode attracts growing attention due to their advantages on specific capacity, rate capability, lifetime, and safety. Herein, a double perovskite La2 MnNiO6 synthesized by solid-state reaction method as a high-performance anode material for LIBs is reported. La2 MnNiO6 with an average operating potential of <0.8 V versus Li+ /Li exhibits a good rate capability. Besides, the Li|La2 MnNiO6 cells perform long cycle life without decay after 1000 cycles at 1C and a high cycling retention of 93% is observed after 3000 cycles at 6C. It reveals that this material maintains stable perovskite structure with cycling. Theoretical calculations further demonstrate the high electronic conductivity, low diffusion energy barrier, and structural stability of the lithiated La2 MnNiO6 . This study highlights the double perovskite type material as a promising anode for next-generation batteries.
Keywords: anode material; cycling stability; double perovskite; lithium-ion batteries; rate capability.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.