Background: Cervical cancer is one of the most common cancers in women with an incidence of around 6.5 % of all the cancer in women worldwide. Early detection and adequate treatment according to staging improve the patient's life expectancy. Outcome prediction models might aid treatment decisions, but a systematic review on prediction models for cervical cancer patients is not available.
Design: We performed a systematic review for prediction models in cervical cancer following PRISMA guidelines. Key features that were used for model training and validation, the endpoints were extracted from the article and data were analyzed. Selected articles were grouped based on prediction endpoints i.e. Group1: Overall survival, Group2: progression-free survival; Group3: recurrence or distant metastasis; Group4: treatment response; Group5: toxicity or quality of life. We developed a scoring system to evaluate the manuscript. As per our criteria, studies were divided into four groups based on scores obtained in our scoring system, the Most significant study (Score > 60 %); Significant study (60 % > Score > 50 %); Moderately Significant study (50 % > Score > 40 %); least significant study (score < 40 %). A meta-analysis was performed for all the groups separately.
Results: The first line of search selected 1358 articles and finally 39 articles were selected as eligible for inclusion in the review. As per our assessment criteria, 16, 13 and 10 studies were found to be the most significant, significant and moderately significant respectively. The intra-group pooled correlation coefficient for Group1, Group2, Group3, Group4, and Group5 were 0.76 [0.72, 0.79], 0.80 [0.73, 0.86], 0.87 [0.83, 0.90], 0.85 [0.77, 0.90], 0.88 [0.85, 0.90] respectively. All the models were found to be good (prediction accuracy [c-index/AUC/R2] >0.7) in endpoint prediction.
Conclusions: Prediction models of cervical cancer toxicity, local or distant recurrence and survival prediction show promising results with reasonable prediction accuracy [c-index/AUC/R2 > 0.7]. These models should also be validated on external data and evaluated in prospective clinical studies.
Keywords: Artificial Intelligence; Cervical cancer; Meta-analysis; Prediction models; Radiomics; Systematic review.
Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.