We present the first measurements of the electric and magnetic form factors of the neutron in the timelike (positive q^{2}) region as function of four-momentum transfer. We explored the differential cross sections of the reaction e^{+}e^{-}→n[over ¯]n with data collected with the BESIII detector at the BEPCII accelerator, corresponding to an integrated luminosity of 354.6 pb^{-1} in total at twelve center-of-mass energies between sqrt[s]=2.0-2.95 GeV. A relative uncertainty of 18% and 12% for the electric and magnetic form factors, respectively, is achieved at sqrt[s]=2.3935 GeV. Our results are comparable in accuracy to those from electron scattering in the comparable spacelike region of four-momentum transfer. The electromagnetic form factor ratio R_{em}≡|G_{E}|/|G_{M}| is within the uncertainties close to unity. We compare our result on |G_{E}| and |G_{M}| to recent model predictions, and the measurements in the spacelike region to test the analyticity of electromagnetic form factors.