Formation and Polymorphism of Semiconducting K2SiH6 and Strategy for Metallization

Inorg Chem. 2023 May 29;62(21):8093-8100. doi: 10.1021/acs.inorgchem.2c04370. Epub 2023 May 15.

Abstract

K2SiH6, crystallizing in the cubic K2PtCl6 structure type (Fmm), features unusual hypervalent SiH62- complexes. Here, the formation of K2SiH6 at high pressures is revisited by in situ synchrotron diffraction experiments, considering KSiH3 as a precursor. At the investigated pressures, 8 and 13 GPa, K2SiH6 adopts the trigonal (NH4)2SiF6 structure type (Pm1) upon formation. The trigonal polymorph is stable up to 725 °C at 13 GPa. At room temperature, the transition into an ambient pressure recoverable cubic form occurs below 6.7 GPa. Theory suggests the existence of an additional, hexagonal, variant in the pressure interval 3-5 GPa. According to density functional theory band structure calculations, K2SiH6 is a semiconductor with a band gap around 2 eV. Nonbonding H-dominated states are situated below and Si-H anti-bonding states are located above the Fermi level. Enthalpically feasible and dynamically stable metallic variants of K2SiH6 may be obtained when substituting Si partially by Al or P, thus inducing p- and n-type metallicity, respectively. Yet, electron-phonon coupling appears weak, and calculated superconducting transition temperatures are <1 K.