Background: In colorectal cancer (CRC), both tumor invasion and immunological analysis at the tumor invasive margin (IM) are significantly associated with patient prognosis, but have traditionally been reported independently. We propose a new scoring system, the TGP-I score, to assess the association and interactions between tumor growth pattern (TGP) and tumor infiltrating lymphocytes at the IM and to predict its prognostic validity for CRC patient stratification.
Materials and methods: The types of TGP were assessed in hematoxylin and eosin-stained whole-slide images. The CD3+ T-cells density at the IM was automatically quantified on immunohistochemical-stained slides using a deep learning method. A discovery (N = 347) and a validation (N = 132) cohorts were used to evaluate the prognostic value of the TGP-I score for overall survival.
Results: The TGP-I score3 (trichotomy) was an independent prognostic factor, with higher TGP-I score3 associated with worse prognosis in the discovery (unadjusted hazard ratio [HR] for high vs. low 3.62, 95% confidence interval [CI] 2.22-5.90; p < 0.001) and validation cohort (unadjusted HR for high vs. low 5.79, 95% CI 1.84-18.20; p = 0.003). The relative contribution of each parameter to predicting survival was analyzed. The TGP-I score3 had similar importance compared to tumor-node-metastasis staging (31.2% vs. 32.9%) and was stronger than other clinical parameters.
Conclusions: This automated workflow and the proposed TGP-I score could further provide accurate prognostic stratification and have potential value for supporting the clinical decision-making of stage I-III CRC patients.Key messagesA new scoring system, the TGP-I score, was proposed to assess the association and interactions of TGP and TILs at the tumor invasive margin.TGP-I score could be an independent predictor of prognosis for CRC patients, with higher scores being associated with worse survival.TGP-I score had similar importance compared to tumor-node-metastasis staging and was stronger than other clinical parameters.
Keywords: Colorectal cancer; deep learning; tumor growth pattern; tumor-infiltrating lymphocytes; whole-slide images.