A group of EGFR inhibitors derived from thieno[2,3-d]pyrimidine nucleus was designed, synthesised, and examined as anti-proliferative lead compounds. MCF-7 and A549 cell lines were inhibited by 5b, the most active member. It had inhibitory partialities of 37.19 and 204.10 nM against EGFRWT and EGFRT790M, respectively. Compound 5b was 2.5 times safer against the WI-38 normal cell lines than erlotinib. Also, it demonstrated considerable potentialities for both early and late apoptosis induction in A549. Simultaneously, 5b arrested A549's growth at G1 and G2/M phases. Harmoniously, 5b upregulated the BAX and downregulated the Bcl-2 genes by 3-fold and increased the BAX/Bcl-2 ratio by 8.3-fold comparing the untreated A549 cells. Molecular docking against EGFRWT and EGFRT790M indicated the correct binding modes. Furthermore, MD simulations confirmed the precise binding of 5b against the EGFR protein over 100 ns. Finally, various computational ADMET studies were carried out and indicated high degrees of drug-likeness and safety.
Keywords: Anti-proliferative; EGFR inhibitors; MD simulations; apoptosis; thieno[2,3-d]pyrimidines.