MicroRNAs (miRNAs) have been demonstrated to modulate life span in the invertebrates C. elegans and Drosophila by targeting conserved pathways of aging, such as insulin/IGF-1 signaling (IIS). However, a role for miRNAs in modulating human longevity has not been fully explored. Here we investigated novel roles of miRNAs as a major epigenetic component of exceptional longevity in humans. By profiling the miRNAs in B-cells from Ashkenazi Jewish centenarians and 70-year-old controls without a longevity history, we found that the majority of differentially expressed miRNAs were upregulated in centenarians and predicted to modulate the IIS pathway. Notably, decreased IIS activity was found in B cells from centenarians who harbored these upregulated miRNAs. miR-142-3p, the top upregulated miRNA, was verified to dampen the IIS pathway by targeting multiple genes including GNB2, AKT1S1, RHEB and FURIN . Overexpression of miR-142-3p improved the stress resistance under genotoxicity and induced the impairment of cell cycle progression in IMR90 cells. Furthermore, mice injected with a miR-142-3p mimic showed reduced IIS signaling and improved longevity-associated phenotypes including enhanced stress resistance, improved diet/aging-induced glucose intolerance, and longevity-associated change of metabolic profile. These data suggest that miR-142-3p is involved in human longevity through regulating IIS-mediated pro-longevity effects. This study provides strong support for the use of miR-142-3p as a novel therapeutic to promote longevity or prevent aging/aging-related diseases in human.