Wheat stripe rust is one of the diseases that seriously affect wheat production worldwide. Breeding resistant cultivars is an effective way to control this disease. The wheat stripe rust resistance gene Yr62 has high-temperature adult-plant resistance (HTAP). In this study, PI 660,060, a single Yr62 gene line, was crossed with four Chinese wheat cultivars, LunXuan987 (LX987), Bainongaikang58 (AK58), ZhengMai9023 (ZM9023), and HanMai6172 (H6172). F1 seeds of four cross combinations were planted and self-crossed to develop the advance generations in the field. The seeds of each cross were mixed harvested and about 2400 to 3000 seeds were sown in each generation for F1 to F4 to maintain the maximum possible genotypes. Forty-five lines were selected and evaluated for resistance to stripe rust and agronomic traits, including plant height, number of grains per spike, and tiller number, in F5 and F6. Then, 33 lines with good agronomic traits and high disease resistance were developed to F9 generation. SSR markers Xgwm251 and Xgwm192 flank linked with the Yr62 were used to detect the presence of Yr62 in these 33 F9 lines. Of these, 22 lines were confirmed with the resistance gene Yr62. Finally, nine lines with good agronomic traits and disease resistance were successfully selected. The selected wheat lines in this study provide material support for the future breeding of wheat for stripe rust resistance.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-023-01393-1.
Keywords: Disease resistance breeding; HTAP resistance; SSR maker detection; Stripe rust; Wheat; Yr62.
© The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.