Photochemical reaction exploiting an excited triplet state (T1 ) of a molecule requires two steps for the excitation, i.e., electronic transition from the ground (S0 ) to singlet excited (S1 ) states and intersystem crossing to the T1 state. A dielectric metasurface coupled with photosensitizer that enables energy efficient photochemical reaction via the enhanced S0 →T1 magnetic dipole transition is developed. In the direct S0 →T1 transition, the photon energy of several hundreds of meV is saved compared to the conventional S0 → S1 →T1 transition. To maximize the magnetic field intensity on the surface, a silicon (Si) nanodisk array metasurface with toroidal dipole resonances is designed. The surface of the metasurface is functionalized with ruthenium (Ru(II)) complexes that work as a photosensitizer for singlet oxygen generation. In the coupled system, the rate of the direct S0 →T1 transition of Ru(II) complexes is 41-fold enhanced at the toroidal dipole resonance of a Si nanodisk array. The enhancement of a singlet oxygen generation rate is observed when the toroidal dipole resonance of a Si nanodisk array is matched with the direct S0 →T1 transition wavelength of Ru(II) complexes.
Keywords: photosensitizers; spin-forbidden transition; toroidal dipole mode.
© 2023 Wiley-VCH GmbH.