Post-processed data and graphical tools for a CONUS-wide eddy flux evapotranspiration dataset

Data Brief. 2023 May 30:48:109274. doi: 10.1016/j.dib.2023.109274. eCollection 2023 Jun.

Abstract

Large sample datasets of in situ evapotranspiration (ET) measurements with well documented data provenance and quality assurance are critical for water management and many fields of earth science research. We present a post-processed ET oriented dataset at daily and monthly timesteps, from 161 stations, including 148 eddy covariance flux towers, that were chosen based on their data quality from nearly 350 stations across the contiguous United States. In addition to ET, the data includes energy and heat fluxes, meteorological measurements, and reference ET downloaded from gridMET for each flux station. Data processing techniques were conducted in a reproducible manner using open-source software. Most data initially came from the public AmeriFlux network, however, several different networks (e.g., the USDA-Agricultural Research Service) and university partners provided data that was not yet public. Initial half-hourly energy balance data were gap-filled and aggregated to daily frequency, and turbulent fluxes were corrected for energy balance closure error using the FLUXNET2015/ONEFlux energy balance ratio approach. Metadata, diagnostics of energy balance, and interactive graphs of time series data are included for each station. Although the dataset was developed primarily to benchmark satellite-based remote sensing ET models of the OpenET initiative, there are many other potential uses, such as validation for a range of regional hydrologic and atmospheric models.

Keywords: Energy balance closure; Evapotranspiration (ET); Flux data; Meteorological; Post-processing.