Substance P (SP), a neuroprotective peptidergic neurotransmitter, is known to have immunoreactivity (IR) localized to amacrine and/or ganglion cells in a variety of species' retinas, but it has not yet been studied in the mouse retina. Thus, we investigated the distribution and synaptic organization of SP-IR by confocal and electron microscopy immunocytochemistry in the mouse retina. SP-IR was distributed in the inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL). Most of the SP-IR somas belonged to amacrine cells (2.5% of all) in the INL and their processes stratified into the S1, S3, and S5 layers of the IPL, with the most intense band in the S5 layer. Some SP-IR somas can also be observed in the GCL, which were identified as displaced amacrine cells (82%, 1269/1550) and ganglion cells (18%, 281/1550) by antibodies against AP2α and RBPMS, respectively. Such SP-IR ganglion cells (1.2% of all RGCs) can be further divided into 3 subgroups expressing SP/α-Synuclein (α-Syn), SP/GAD67, and/or SP/GAD67/α-Syn. Possible physiological and pathological roles of these ganglion cells are discussed. Further, electron microscopy evidence demonstrates that SP-IR amacrine cells receive major inputs from other SP-IR amacrine cell processes (146/242 inputs) and output mostly to SP-negative amacrine cell processes (291/673 outputs), suggesting series inhibition among amacrine cells. These results reveal for the first time an explicit distribution, novel ganglion cell features, and synaptic organization of SP-IR in the mouse retina, which is important for the future use of mouse models to study the roles of SP in healthy and diseased (including Parkinson's disease) retinal states.
Keywords: Amacrine cells; Ganglion cells; Immunoreactivity; Mouse; Substance P; Synaptic circuitry.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.