OsGSTU17, a Tau Class Glutathione S-Transferase Gene, Positively Regulates Drought Stress Tolerance in Oryza sativa

Plants (Basel). 2023 Sep 4;12(17):3166. doi: 10.3390/plants12173166.

Abstract

As a great threat to the normal growth of rice, drought not only restricts the growth of rice, but also affects its yield. Glutathione S-transferases (GSTs) have antioxidant and detoxification functions. In rice, GSTs can not only effectively cope with biological stress, but also play a defense role against abiotic stress. In this study, we selected OsGSTU17, a member gene that was induced by drought, to explore the role of GSTs and analyze their physiological mechanisms that are involved in rice drought tolerance. With the CRISPR/Cas9 knockout system techniques, we obtained two independent mutant lines of osgstu17. After 14 days of drought stress treatment, and then re-supply of the water for 10 days, the survival rate of the osgstu17 mutant lines was significantly reduced compared to the wild-type (WT). Similarly, with the 10% (w/v) PEG6000 hydroponics experiment at the seedling stage, we also found that compared with the WT, the shoot and root biomass of osgstu17 mutant lines decreased significantly. In addition, both the content of the MDA and H2O2, which are toxic to plants, increased in the osgtu17 mutant lines. On the other hand, chlorophyll and proline decreased by about 20%. The activity of catalase and superoxide dismutase, which react with peroxides, also decreased by about 20%. Under drought conditions, compared with the WT, the expressions of the drought stress-related genes OsNAC10, OsDREB2A, OsAP37, OsP5CS1, OsRAB16C, OsPOX1, OsCATA, and OsCATB in the osgtu17 mutant lines were significantly decreased. Finally, we concluded that knocking out OsGSTU17 significantly reduced the drought tolerance of rice; OsGSTU17 could be used as a candidate gene for rice drought-tolerant cultivation. However, the molecular mechanism of OsGSTU17 involved in rice drought resistance needs to be further studied.

Keywords: CRISPR/Cas9; Oryza sativa L.; OsGSTU17; drought tolerance; glutathione S-transferases.

Grants and funding

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (2022A1515012381) and the Shenzhen Science and Technology Program (JCYJ20210324124409027).