Spinal muscular atrophy (SMA) is characterized by progressive muscle weakness and paralysis. Motor function is monitored in the clinical setting using assessments including the 32-item Motor Function Measure (MFM-32), but changes in disease severity between clinical visits may be missed. Digital health technologies may assist evaluation of disease severity by bridging gaps between clinical visits. We developed a smartphone sensor-based assessment suite, comprising nine tasks, to assess motor and muscle function in people with SMA. We used data from the risdiplam phase 2 JEWELFISH trial to assess the test-retest reliability and convergent validity of each task. In the first 6 weeks, 116 eligible participants completed assessments on a median of 6.3 days per week. Eight of the nine tasks demonstrated good or excellent test-retest reliability (intraclass correlation coefficients >0.75 and >0.9, respectively). Seven tasks showed a significant association (P < 0.05) with related clinical measures of motor function (individual items from the MFM-32 or Revised Upper Limb Module scales) and seven showed significant association (P < 0.05) with disease severity measured using the MFM-32 total score. This cross-sectional study supports the feasibility, reliability, and validity of using smartphone-based digital assessments to measure function in people living with SMA.
Keywords: Digital biomarker; Digital health technologies; Digital measures; Remote monitoring; Sensor features; Spinal muscular atrophy.
Copyright © 2023. Published by Elsevier B.V.