YAP and TAZ regulate remyelination in the central nervous system

Glia. 2024 Jan;72(1):156-166. doi: 10.1002/glia.24467. Epub 2023 Sep 19.

Abstract

Myelinating cells are sensitive to mechanical stimuli from their extracellular matrix. Ablation of YAP and TAZ mechanotransducers in Schwann cells abolishes the axon-Schwann cell recognition, myelination, and remyelination in the peripheral nervous system. It was unknown if YAP and TAZ are also required for myelination and remyelination in the central nervous system. Here we define the importance of oligodendrocyte (OL) YAP and TAZ in vivo, by specific deletion in oligodendroglial cells in adult OLs during myelin repair. Blocking YAP and TAZ expression in OL lineage cells did not affect animal viability or any major defects on OL maturation and myelination. However, using a mouse model of demyelination/remyelination, we demonstrate that YAP and TAZ modulate the capacity of OLs to remyelinate axons, particularly during the early stage of the repair process, when OL proliferation is most important. These results indicate that YAP and TAZ signaling is necessary for effective remyelination of the mouse brain.

Keywords: Taz; Yap; myelin; oligodendrocyte; remyelination.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Central Nervous System / physiology
  • Myelin Sheath / metabolism
  • Oligodendroglia / metabolism
  • Remyelination*
  • Schwann Cells / metabolism