Excessive salt intake raises blood pressure, but the implications of this observation for human health have remained contentious. It has also been recognized for many years that potassium intake may mitigate the effects of salt intake on blood pressure and possibly on outcomes such as stroke. Recent large randomized intervention trials have provided strong support for the benefits of replacing salt (NaCl) with salt substitute (75% NaCl, 25% KCl) on hard outcomes, including stroke. During the same period of time, major advances have been made in understanding how the body senses and tastes salt, and how these sensations drive intake. Additionally, new insights into the complex interactions between systems that control sodium and potassium excretion by the kidneys, and the brain have highlighted the existence of a potassium switch in the kidney distal nephron. This switch seems to contribute importantly to the blood pressure-lowering effects of potassium intake. In recognition of these evolving data, the United States Food and Drug Administration is moving to permit potassium-containing salt substitutes in food manufacturing. Given that previous attempts to reduce salt consumption have not been successful, this new approach has a chance of improving health and ending the 'Salt Wars'.
Keywords: brain; kidney; nephrons; potassium; sodium.