Alternative splicing (AS) appears to be altered in Huntington's disease (HD), but its significance for early, pre-symptomatic disease stages has not been inspected. Here, taking advantage of Htt CAG knock-in mouse in vitro and in vivo models, we demonstrate a correlation between Htt CAG repeat length and increased aberrant linear AS, specifically affecting neural progenitors and, in vivo, the striatum prior to overt behavioral phenotypes stages. Remarkably, a significant proportion (36%) of the aberrantly spliced isoforms are not-functional and meant to non-sense mediated decay (NMD). The expanded Htt CAG repeats further reflect on a previously neglected, global impairment of back-splicing, leading to decreased circular RNAs production in neural progenitors. Integrative transcriptomic analyses unveil a network of transcriptionally altered micro-RNAs and RNA-binding proteins (Celf, hnRNPs, Ptbp, Srsf, Upf1, Ythd2) which might influence the AS machinery, primarily in neural cells. We suggest that this unbalanced expression of linear and circular RNAs might alter neural fitness, contributing to HD pathogenesis.
Copyright: © 2023 Ayyildiz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.