Hydroxyapatite-based nano-drug delivery system for nicotinamide mononucleotide (NMN): significantly enhancing NMN bioavailability and replenishing in vivo nicotinamide adenine dinucleotide (NAD+) levels

J Pharm Pharmacol. 2023 Dec 8;75(12):1569-1580. doi: 10.1093/jpp/rgad090.

Abstract

Objectives: This study addresses the bioavailability challenges associated with oral nicotinamide mononucleotide (NMN) administration by introducing an innovative NMN formulation incorporated with hydroxyapatite (NMN-HAP).

Methods: The NMN-HAP was developed using a wet chemical precipitation and physical adsorption method. To assess its superiority over conventional free NMN, we examined NMN, nicotinamide adenine dinucleotide (NAD+), and nicotinamide riboside (NR) levels in mouse plasma and tissues following oral administration of NMN-HAP.

Key findings: NMN-HAP nanoparticles demonstrated a rod-shaped morphology, with an average size of ~50 nm, along with encapsulation efficiency and drug loading capacity exceeding 40%. In vitro, drug release results indicated that NMN-HAP exhibited significantly lower release compared with free NMN. In vivo studies showed that NMN-HAP extended circulation time, improved bioavailability compared with free NMN, and elevated plasma levels of NMN, NAD+, and NR. Moreover, NMN-HAP administration displayed tissue-specific distribution with a substantial accumulation of NMN, NAD+, and NR in the brain and liver.

Conclusion: NMN-HAP represents an ideal formulation for enhancing NMN bioavailability, enabling tissue-specific delivery, and ultimately elevating in vivo NAD+ levels. Considering HAP's biocompatible nature and versatile characteristics, we anticipate that this system has significant potential for various future applications.

Keywords: ageing; bioavailability; metabolism; nicotinamide riboside (NR); pharmacokinetic; tissue-specific.

MeSH terms

  • Animals
  • Biological Availability
  • Brain / metabolism
  • Hydroxyapatites
  • Mice
  • NAD* / metabolism
  • Nicotinamide Mononucleotide* / metabolism

Substances

  • NAD
  • Nicotinamide Mononucleotide
  • Hydroxyapatites