Unraveling Multiple Pathways of Electron Donation from Phenolic Moieties in Natural Organic Matter

Environ Sci Technol. 2023 Nov 7;57(44):16895-16905. doi: 10.1021/acs.est.3c05377. Epub 2023 Oct 23.

Abstract

Natural organic matter (NOM) exhibits a distinctive electron-donating capacity (EDC) that serves a pivotal role in the redox reactions of contaminants and minerals through the transformation of electron-donating phenolic moieties. However, the ambiguity of the molecular transformation pathways (MTPs) that engender the EDC during NOM oxidation remains a significant issue. Here, MTPs that contribute to EDC were investigated by identifying the oxidized products of phenolic model compounds and NOM samples in direct or mediated electrochemical oxidation (DEO or MEO, respectively) using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). It was found that the oxidation of newly formed phenolic-OH (ArOH) and the oxidative coupling reaction of the phenoxy radical are the main MTPs that directly contribute to EDC, in addition to the transformation of hydroquinones to quinones. Notably, the oxidative coupling reaction of ArOH contributed at least 22-42% to the EDC. Ferulic acid-like structures can also directly contribute to EDC by incorporating H2O into their acrylic substituents. Furthermore, the opening of C rings can indirectly attenuate the EDC through structural alterations in the electron-donating process of NOM. Decarboxylation can either weaken or enhance the EDC depending on the structure of the phenolic moieties in NOM. These findings suggest that the EDC of NOM is a comprehensive result of multiple NOM MTPs, involving not only ArOH oxidation but also the addition of H2O to olefinic bonds and bond-breaking reactions. Our work provides molecular evidence that aids in the comprehension of the multiple EDC-associated transformation pathways of NOM.

Keywords: decarboxylation; electron-donating capacity; mediated electrochemical oxidation; multiple electron transfer pathways; oxidative coupling reaction; phenolic moieties.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrons*
  • Mass Spectrometry
  • Oxidation-Reduction