Aerosols cool Earth's climate indirectly by increasing low cloud brightness and their coverage (Cf), constituting the aerosol indirect forcing (AIF). The forcing partially offsets the greenhouse warming and positively correlates with the climate sensitivity. However, it remains highly uncertain. Here, we show direct observational evidence for strong forcing from Cf adjustment to increased aerosols and weak forcing from cloud liquid water path adjustment. We estimate that the Cf adjustment drives between 52% and 300% of additional forcing to the Twomey effect over the ocean and a total AIF of -1.1 ± 0.8 W m-2. The Cf adjustment follows a power law as a function of background cloud droplet number concentration, Nd. It thus depends on time and location and is stronger when Nd is low. Cf only increases substantially when background clouds start to drizzle, suggesting a role for aerosol-precipitation interactions. Our findings highlight the Cf adjustment as the key process for reducing the uncertainty of AIF and thus future climate projections.