Background and hypothesis: Corollary discharge mechanism suppresses the conscious auditory sensory perception of self-generated speech and attenuates electrophysiological markers such as the auditory N1 Event-Related Potential (ERP) during Electroencephalographic (EEG) recordings. This phenomenon contributes to self-identification and seems to be altered in people with schizophrenia. Therefore, its alteration could be related to the anomalous self-experiences (ASEs) frequently found in these patients.
Study design: To analyze corollary discharge dysfunction as a possible substrate of ASEs, we recorded EEG ERP from 43 participants with schizophrenia and 43 healthy controls and scored ASEs with the 'Inventory of Psychotic-Like Anomalous Self-Experiences' (IPASE). Positive and negative symptoms were also scored with the 'Positive and Negative Syndrome Scale for Schizophrenia' (PANSS) and with the 'Brief Negative Symptom Scale' (BNSS) respectively. The N1 components were elicited by two task conditions: (1) concurrent listening to self-pronounced vowels (talk condition) and (2) subsequent non-concurrent listening to the same previously self-uttered vowels (listen condition).
Study results: The amplitude of the N1 component elicited by the talk condition was lower compared to the listen condition in people with schizophrenia and healthy controls. However, the difference in N1 amplitude between both conditions was significantly higher in controls than in schizophrenia patients. The values of these differences in patients correlated significantly and negatively with the IPASE, PANSS, and BNSS scores.
Conclusions: These results corroborate previous data relating auditory N1 ERP amplitude with altered corollary discharge mechanisms in schizophrenia and support corollary discharge dysfunction as a possible underpinning of ASEs in this illness.
Keywords: N1; attenuation; event-related potentials; ipseity; speech; symptoms.
© The Author(s) 2023. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].