Thermodynamic uncertainty relations (TURs) are general lower bounds on the size of fluctuations of dynamical observables. They have important consequences, one being that the precision of estimation of a current is limited by the amount of entropy production. Here, we prove the existence of general upper bounds on the size of fluctuations of any linear combination of fluxes (including all time-integrated currents or dynamical activities) for continuous-time Markov chains. We obtain these general relations by means of concentration bound techniques. These "inverse TURs" are valid for all times and not only in the long time limit. We illustrate our analytical results with a simple model, and discuss wider implications of these new relations.