Cellulose, an abundant and eco-friendly polymer, is a promising raw material to be used for preparing energy storage devices such as lithium-ion batteries (LIBs). Despite the significance of cellulose functional groups in LIBs components, their structure-properties-application relationship remains largely unexplored. This article thoroughly reviews the current research status on cellulose-based materials for LIBs components, with a specific focus on the impact of functional groups in cellulose-based separators. The emphasis is on how these functional groups can enhance the mechanical, thermal, and electrical properties of the separators, potentially replacing conventional non-renewal material-derived components. Through a meticulous investigation, the present review reveals that certain functional groups, such as hydroxyl groups (-OH), carboxyl groups (-COOH), carbonyl groups (-CHO), ester functions (R-COO-R'), play a crucial role in improving the mechanical strength and wetting ability of cellulose-based separators. Additionally, the inclusion of phosphoric group (-PO3H2), sulfonic group (-SO3H) in separators can contribute to the enhanced thermal stability. The significance of comprehending the influence of functional groups in cellulose-based materials on LIBs performance is highlighted by these findings. Ultimately, this review explores the challenges and perspectives of cellulose-based LIBs, offering specific recommendations and prospects for future research in this area.
Keywords: Cellulose; Functional groups; Lithium-ion battery; Separator.
Copyright © 2023 Elsevier Ltd. All rights reserved.