The development of new cryoprotectants for cryopreservation of cells has attracted considerable interest. Herein, five calixarene-based CPAs (SC4A, S-S-C4A, S-SO2-C4A, SBAC4A, and CAC4A) were developed, and their IRI activity, DIS property and cryoprotective effect were studied. SBAC4A with a sulphobetaine zwitterion and SC4A with sulfo group modification possessed better cryoprotective effects than the other calixarene-based CPAs, especially for SBAC4A with the enhanced cell viabilities of 16.16 ± 1.78%, 12.60 ± 1.15% and 14.90 ± 1.66% against MCF-7, hucMSCs and A549 cells, respectively. This result provides a supramolecular principle for developing novel CPAs with consideration of the factors of hydrogen bonding, the macromolecular crowding principle and the three-dimensional (3D) structure.