Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 RNP

bioRxiv [Preprint]. 2023 Nov 15:2023.11.15.566339. doi: 10.1101/2023.11.15.566339.

Abstract

Lipid nanoparticle (LNP) delivery of CRISPR ribonucleoproteins (RNPs) has the potential to enable high-efficiency in vivo genome editing with low toxicity and an easily manufactured technology, if RNP efficacy can be maintained during LNP production. In this study, we engineered a thermostable Cas9 from Geobacillus stearothermophilus (GeoCas9) using directed evolution to generate iGeoCas9 evolved variants capable of robust genome editing of cells and organs. iGeoCas9s were significantly better at editing cells than wild-type GeoCas9, with genome editing levels >100X greater than those induced by the native GeoCas9 enzyme. Furthermore, iGeoCas9 RNP:LNP complexes edited a variety of cell lines and induced homology-directed repair (HDR) in cells receiving co-delivered single-stranded DNA (ssDNA) templates. Using tissue-selective LNP formulations, we observed genome editing of 35‒56% efficiency in the liver or lungs of mice that received intravenous injections of iGeoCas9 RNP:LNPs. In particular, iGeoCas9 complexed to acid-degradable LNPs edited lung tissue in vivo with an average of 35% efficiency, a significant improvement over editing efficiencies observed previously using viral or non-viral delivery strategies. These results show that thermostable Cas9 RNP:LNP complexes are a powerful alternative to mRNA:LNP delivery vehicles, expanding the therapeutic potential of genome editing.

Publication types

  • Preprint