Protein kinase B/AKT phosphorylates hypoxia-inducible factor-3α1 in response to insulin, promoting cell growth and migration

Front Cell Dev Biol. 2023 Nov 9:11:1250000. doi: 10.3389/fcell.2023.1250000. eCollection 2023.

Abstract

Hypoxia-inducible factors (HIFs) are best known for their roles in the adaptation to low oxygen environments. Besides hypoxia, HIF-1/2 α-subunits are also regulated by various non-hypoxic stimuli including insulin which can act via the PI3K/protein kinase B (PKB) signaling pathway. However, with respect to insulin little is known about HIF-3α. We aimed to investigate this relationship and found that insulin stimulates HIF-3α expression under both normal and low oxygen conditions. Blocking PKB activity reversed the effects of insulin, indicating that HIF-3α is a direct target of PKB. We identified serine 524, located in the oxygen-dependent degradation domain of HIF-3α, as a phosphorylation site of PKB. Mutating serine 524 impaired binding of PKB to HIF-3α and its ubiquitination, suggesting that PKB regulates HIF-3α stability through phosphorylation, thereby affecting important cellular processes such as cell viability and cell adhesion. Importantly, we discovered that this phosphorylation site also influenced insulin-dependent cell migration. These findings shed light on a novel mechanism by which insulin affects PKB-dependent HIF-3α expression and activity, with potential implications in metabolic diseases and cancer.

Keywords: HIF-3α; PKB/AKT; cell migration; hypoxia; insulin; phosphorylation.

Grants and funding

This work was supported by the Academy of Finland 356920, the Jane and Aatos Erkko Foundation 210031, the Finnish Cancer Foundation, the Sigrid Juselius Foundation, the University of Oulu, and Biocenter Oulu as a member of Biocenter Finland.