Recently, leveraging deep neural networks for automated colorectal polyp segmentation has emerged as a hot topic due to the favored advantages in evading the limitations of visual inspection, e.g., overwork and subjectivity. However, most existing methods do not pay enough attention to the uncertain areas of colonoscopy images and often provide unsatisfactory segmentation performance. In this paper, we propose a novel boundary uncertainty aware network (BUNet) for precise and robust colorectal polyp segmentation. Specifically, considering that polyps vary greatly in size and shape, we first adopt a pyramid vision transformer encoder to learn multi-scale feature representations. Then, a simple yet effective boundary exploration module (BEM) is proposed to explore boundary cues from the low-level features. To make the network focus on the ambiguous area where the prediction score is biased to neither the foreground nor the background, we further introduce a boundary uncertainty aware module (BUM) that explores error-prone regions from the high-level features with the assistance of boundary cues provided by the BEM. Through the top-down hybrid deep supervision, our BUNet implements coarse-to-fine polyp segmentation and finally localizes polyp regions precisely. Extensive experiments on five public datasets show that BUNet is superior to thirteen competing methods in terms of both effectiveness and generalization ability.
Keywords: Boundary uncertainty; Colonoscopy image; Deep neural networks; Polyp segmentation.
Copyright © 2023 Elsevier Ltd. All rights reserved.